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ABSTRACT.  Aging properties of a general repair process are considered. Under certain 

assumptions it is proved that the expectation of an age at the beginning of the next cycle 

in this process is smaller than the initial age of the previous cycle. Using this reasoning it 

is shown that the sequence of random ages at the start (end) of consecutive cycles is sto-

chastically increasing and is converging to a limiting distribution. Possible applications 

and interpretations are discussed. 
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1. INTRODUCTION 
 
A convenient mathematical description of repair processes uses a concept of stochastic 

(or failure) intensity (Aven and Jensen, 1999). Consider, e.g., a renewal process (perfect, 

instantaneous repair) with an underlying absolutely continuous distribution, 

),0[),( ∞∈ttF , a failure rate )(tλ  and a sequence of waiting times 0,1},{ 0 =≥ SnSn . 

Denote the sequence of i.i.d inter-arrival times by 11;1},{ TSnTn =≥ . The stochastic in-

tensity in this case is compactly written via the corresponding indicator function as 
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Denote by tA  the age process, which corresponds to the renewal process (1): 
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Thus, tA  starts at 0=t  as a linear function with a unit slope. It jumps down to 0  at 1S  , 

which is the time of the first renewal, etc. The age of a repairable system in this case is 

just the time elapsed since the last renewal.  

      As a minimal repair does not change the age of a system, its age process is trivial: 

0; ≥= ttAt .                                                                 (3) 

     Assume now that a repair action at 1tt =  (realization of 1T ) decreases the age of a sys-

tem not to 0  as in the case of a perfect repair, but to 10,11 <<= qqtv , and the system 

starts the second cycle with this initial age in accordance with the Cdf 

)(/)(1 11 vFtvF +− , where FF −≡ 1 . This age is often called the virtual age. For con-

venience we will omit the term “virtual” in what follows. The forthcoming cycles are de-

fined in a similar way to form a process of general repair (Kijima, 1989; Stadje and 

Zuckerman, 1991; Finkelstein, 1992a, 2000; Baxter et al., 1996; Last and Szekli, 1998, to 

name a few). The sequence of ages after the i th repair 0}{ ≥iiV  in this model for a specific 

case of a linear, deterministic repair function qt  is defined as 

),....(),....,(;;0 1212110 iii TVqVTVqVqTVV +=+=== −                              (4) 

and distributions of the corresponding inter-arrival times for realizations iv  are given by:  
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Therefore, the age process for this model is  

0);()( 1
0

≥<≤+−= +

∞

=
� tStSIVStA nnnn
n

t .                                    (6) 



 3

     Other settings and generalizations can be also considered (see, e.g., Last and Szekli, 

1998 for relevant examples). All these models have a crucial common feature: the corre-

sponding age processes are defined by the generic distribution )(tF  and only the ‘posi-

tion’ of the starting point of each cycle (as, e.g., in (5)) depends on the concrete model. 

     Define a stochastic point process as stochastically aging, if its inter-arrival 

times 1},{ ≥nTn  are stochastically decreasing:  

1,1 ≥≤+ iTT isti  ,                                                        (7) 

Thus, the renewal process is not aging in this sense, whereas the non-homogeneous Pois-

son process is aging, if its rate is an increasing function.  

     The following definition deals with aging properties of the sequence of ages at the 

start (end) of cycles for the point processes of the described types.  

 
Definition. The age process is called stochastically increasing, if the (embedded) se-

quence of ages at the start (end) of cycles is stochastically increasing.  

 

If, e.g., a generic )(tF  is IFR, then the stochastically increasing age process describes 

overall deterioration of our repairable system with time, which is the case for various 

wearing out systems in practice.  

     In what follows we will study the properties of the age process (6) with a non-linear  

quality of repair function )(tq . Under rather weak assumptions it will be shown that this 

process is stochastically increasing and is becoming stable in distribution (converges to a 

limiting distribution as ∞→t ). These issues for the linear )(tq  were first addressed in 

Finkelstein (1992a), where the corresponding renewal-type equations were also derived. 

The rigorous and detailed treatment of monotonicity and stability for rather general age 

processes driven by generic )(tF  was given by Last and Szekli (1998). The approach of 

these authors is based on applying some fundamental probabilistic results: A Loynes-type 

scheme and Harris-recurrent Markov chains were used. Our approach for a more specific 

model (but with weaker assumptions on )(tF  and with a time dependent )(tq ) is based 

on a direct probabilistic reasoning and on the appealing ‘geometrical’ notion of an equi-

librium age *v .  
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      Apart from obvious engineering applications, these results may have some important 

biological interpretation. Most biological theories of aging agree that the process of aging 

can be considered as some process of “wear and tear” (see, e.g., Yashin et al, 1999 ). The 

existence of repair mechanisms in organisms decreasing the accumulated damage on 

various levels is also a well established fact. As in the case of DNA mutations in the 

process of cells replication, this repair is not perfect. Asymptotic stability of the repair 

process means that an organism, as a repairable system, is practically not aging in the de-

fined sense for sufficiently large t . Therefore, the deceleration of human mortality rate at 

advanced ages (see, e.g., Thatcher, 1999) and even its approaching the mortality plateau 

can be explained in this way. As it will be seen, this conclusion rely on an important as-

sumption that a repair action decreases the overall accumulated damage and not only its 

last increment. It is worth noting that another possible explanation of mortality decelera-

tion phenomenon at advanced ages is via the concept of population heterogeneity (see 

Finkelstein and Esaulova, 2006 for mathematical details). 

 
2. THE QUALITY OF REPAIR FUNCTION 
 
Assume now that a linear function qt  in (4) is now an increasing, continuous in ),0[ ∞  

and concave function 0)0();( =qtq . Therefore: 

).,0[,),()()( 212121 ∞∈+≤+ tttqtqttq                                    (8) 

Let also 

tqtq 0)( <  ,                                                             (9) 

where 10 <q , which shows that repair rejuvenates the failed item to some extent and that 

)(tq  cannot be arbitrary close to ttq =)(  (minimal repair). 

     Let a cycle start with an age v . Denote by )(vT  the cycle duration: The remaining 

lifetime with a survival function given by the right hand side of equation (5) for  vvi =−1 .   

The next cycle will start at a random age ))(( vTvq + . In this section we will be interested 

in some equilibrium age *v . Define this age as a solution of the following equation: 

vvTvqE =+ ))](([ .                                                     (10) 
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Thus, if some cycle of a general repair process starts at age *v , then the next cycle will 

start with a random age which expectation is *v , which is obviously a martingale prop-

erty. 

 

Theorem 1.  Let 1},{ ≥nTn  be a process of general repair with an increasing, continu-

ous quality of repair function )(tq , defined by relations (8) and (9).  

     Assume that the generic distribution )(tF  has a finite first moment and that the corre-

sponding failure rate is either bounded from below for the sufficiently large t  by 0>c  

or is converging to 0  as ∞→t  such that 

∞=∞→ )(lim ttt λ .                                                 (11) 

     Then there exists, at least, one solution of equation (10), and if there are more than 

one,  the set of these solutions is bounded in ),0[ ∞ . 

 
Proof. a. As ∞<)]0([TE , it is evident, that 0,)]([ >∞< vvTE . If  )(tλ  is bounded from 

below by  0>c , then  

c
vTE

1
)]([ ≤ , 

Therefore, applying (8)  

)]([)()](([ vTEvqvTvqE +≤+ .                                         (12) 

It follows from (9) and (12)) that 

vvTvqE <+ ))](([  

for sufficiently large v . On the other hand, 0))]0(([ >TqE , which proves the first part of 

this theorem, as the function vvTvqE −+ ))](([  is continuous in ν , positive at 0=v  and 

negative for sufficiently large v . 

     b. Let now 0)( →tλ  as ∞→t . Consider the following quotient: 
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Applying the L’Hopital’s rule and using assumption (11) 

0
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Therefore, applying inequality (12) and taking into account relations (9) and (13),  

1
)]([)())](([ <+≤+

v
vTE

v
vq

v
vTvqE

. 

The last inequality holds for sufficiently large v . Using the same argument as in the first 
part of the proof, completes our reasoning. 
 
Corollary.  If IFRtF ∈)( , then the conditions of Theorem 1 hold and there is, at least, 
one solution of equation (10). 
 
Remark 1. Sufficient condition (11) is a rather weak one stating, in fact, that )(ttλ  must 

just have a limit as ∞→t , which should not be finite. For instance, the ‘bizarre’ failure 

rate 
t

tt
t

ln|sin|
)( =λ , which tends to 0  as ∞→t , does not comply with (11). On the 

other hand, it is clear that for the, e.g., Weibull distribution with the decreasing failure 

rate relation (11) holds.  

 
Theorem 2. Let ∈)(tF  IFR. Assume that a current cycle of a general repair process 

start at age vv ∆+* , where *v  is an equilibrium solution of equation (10) and 0>∆v .  

     Then the expectation of an age at the start of the next cycle ‘will be closer’ to *v : 

vvvvTvvqEv ∆+<∆++∆+< *))]*(*([* .                                     (14) 

 
Proof. As stated in the corollary to Theorem 1, at least, one solution of equation (10) ex-

ists in this case Let us prove first the right inequality in (14). Taking into account that 
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)(tq  is an increasing function and that random variables )(vT  are stochastically decreas-

ing in v  (for increasing )(tλ ): 

*))](*([))]*(*([ vTvvqEvvTvvqE +∆+<∆++∆+ .                          (15) 

When obtaining this inequality the following simple fact was used: If two distributions 

are ordered as ),0(),()( 21 ∞∈> ttFtF  and )(tg  is an increasing function, then integrating 

by parts it is easy to see that 

��
∞∞

<
0

1
0

2 )()()()( tdFtgtdFtg .                                        (16) 

Finally: 

vvvqvvqvTvqEvTvvqE ∆+<∆+=∆++≤+∆+ *)(*)(*))](*([*))](*([ . 

The left inequality in (14) is proved using the similar arguments: 

**))](*([))]*(*([ vvTvqEvvTvvqE =+>∆++∆+  

after observing that the random variable )*(* vvTvv ∆++∆+  is stochastically larger than 
*)(* vTv + .  

 
Corollary.  If ∈)(xF IFR, equation (10) has a unique solution.  
 
Proof. Assume that there are two solutions of equation (10): 

**))](*([ vvTvqE =+ ,                                                   (17) 

vvTvqE ~)]~(~([ =+ .                                                     (18) 

Let .0,*~ >∆∆+= vvvv  Then, in accordance with (14): 

vvvvvTvvqEvTvqE ~*))]*(*([))]~(~([ =∆+<∆++∆+=+ , 

which contradicts (18). 
 
Remark 2. When equation (10) has a unique solution, it can be shown similar to (14),  

that   

*))]*(*([* vvvTvvqEvv <∆−+∆−<∆− . 
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Remark 3. The results of this section hold when repair action is stochastic: 1},{ ≥iQi  is 

a sequence of i.i.d random variables (independent from other stochastic components of 

the model) with support in ]1,0[  and 1][ <iQE . 

 
     The described properties show that there is a shift in the direction of the equilibrium 

point *v  of the starting age of the next cycle as compared with the starting age of the 

current cycle. Note that for the minimal repair process the corresponding shift is always 

in the direction of infinity.  

 
3. MONOTONICITY AND STABILITY OF AN AGE PROCESS 
 
Denote the age distribution at the start of the ( 1+i )th cycle by )(1 vS

i+θ , ,....2,1=i and by 

,...2,1),( =ivE
iθ  the corresponding age distribution at the end of the previous i th cycle. It 

is clear that in accordance with our model (4)-(5), (8)-(9): 

,...2,1)),(()( 1
1 == −

+ ivqv E
i

S
i θθ                                      (19) 

where the inverse function )(1 vq −  is also increasing. This can be easily seen, as  

))(Pr())(Pr()Pr()( 1
11 vqVvVqvVv E

i
E

i
S

i
S
i

−
++ ≤=≤=≤=θ , 

where S
iV 1+  and E

iV  are random ages at the start of )1( +i th cycle and at the end of the 

previous one, respectively  The following theorem states that the age processes under 

consideration are stochastically increasing. 

 
Theorem 3. Random ages at the end (start) of each cycle in the general repair model (4)-

(5) and (8)-(9) form the stochastically increasing sequences:  

,...2,1,0)),()((),()( 121 =>>> +++ ivvvvv S
i

S
i

E
i

E
i θθθθ .                         (20) 

 
Proof. We shall prove the first inequality; the second one trivially follows from (19). 

Consider the first two cycles. Let Ev1  be the realization of 1T -the age at the end of the first 

cycle and at the same time the duration of this cycle. Then (for this realization) the age at 
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the end of the second cycle is )(()( 11
EE vqTvq + . It is clear that this random variable is sto-

chastically larger than 1T , and as this property holds for each realization, inequalities (20) 

hold for 1=i .  

     Assume that inequalities (20) hold for  3,1 ≥−= nni . Due to definition of age at the 

start and the end of a cycle, integrating by parts and using relation (19): 

[ ]
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where the fact that 
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λλ  is the probability of survival  

from initial age x  to age xv >  was used. This can also be interpreted via the remaining 

lifetime concept. 

     Taking into account the induction assumption and comparing (21) and (22), using 

similar reasoning, as while obtaining inequality (16), results in  

)()())(())(()()( 1
1

1
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and this completes the proof. 
 
     The next theorem states that the increasing (decreasing) sequences of survival (distri-

bution) functions ),(vE
iθ ))(1),(1()( vvv S

i
E

i
S

i θθθ −−  are converging to a limiting sur-

vival (distribution) function as ∞→i . Thus the repair process is stable in the defined 

sense.  

 



 10

Theorem 4. Let the governing distribution )(tF  in a general repair model (4)-(5), (8)-

(9) be IFR.  

     Then there exist the limiting distributions for ages at the start and at the end of cycles: 

))()((lim),()(lim vvvv S
L

S
ii

E
L

E
ii θθθθ == ∞→∞→ .                             (23) 

 
Proof. The proof is based on theorems 2 and 3. As the sequences (20) are increasing at 

each 0>v , there can be only 2 possibilities: Either there are limiting distributions (23) 

with uniform convergence in ),0[ ∞ , or the ages grow infinitely, as for the case of mini-

mal repair: 1=q . The latter means that for each fixed 0>v : 

)0)((lim,0)(lim == ∞→∞→ vv S
ii

E
ii θθ .                                  (24) 

Assume that (24) holds and consider the sequence of ages at the start of a cycle. Then for 

an arbitrary small 0>ς  we can find n  such that  

nivV S
i ≥≤≤ ,*)Pr( ς ,                                             (25) 

where *v  is an equilibrium point, which is unique and finite according to the corollary to 

Theorem 2. It follows from inequalities (14) that for each realization *vv s
i >  the expec-

tation of the starting age at the next cycle is smaller than s
iv . On the other hand, the ‘con-

tribution’ of ages in *),0[ v  can be made arbitrary small, if (24) is true. Therefore, it can 

be easily seen that for the sufficiently large i : 

][][ 1
S

i
S

i VEVE <+ . 

This inequality contradicts Theorem 3, according to which expectations of ages form an 

increasing sequence. Therefore assumption (24) is wrong, and the limiting property (23) 

holds. As previously, the result for the second limit in (23) trivially follows from (19).  

 
Corollary. The sequence of inter-arrival lifetimes 1},{ ≥nTn  is stochastically decreasing 

to a random variable with a limiting distribution: 
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Proof. Equation (26) follows immediately after taking into account that convergence in 

(23) is uniform.  On the other hand, comparing: 
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it is easy to see, using the same argument as when proving Theorem 2, that 

,...2,1;0),()(1 =>>+ ittFtF ii , (stochastically decreasing sequence of inter-arrival times), 

as )()(1 vv ii θθ <+  and the integrand function is increasing in v  for the IFR case. 

    
 
CONCLUDING REMARKS 
 
Under reasonable assumptions we show that the general repair process with a quality of 

repair function )(tq , defined by relations (8) and (9), is stochastically increasing. There-

fore, this property describes a certain overall deterioration of a repairable object. On the 

other hand, Theorem 4 states that this deterioration slows down and eventually vanishes 

at the infinity, which means that the defined type of repair is decreasing age (wear) in a 

‘sufficient’ for this result way. 

     Model (4) is usually referred to in the literature as Kijimaa-2 general repair model. It 

is worth noting that it was independently suggested and analyzed in Finkelstein (1988). 

Unfortunately this paper was not translated into English.. 
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